Can We See Gravitational Collapse in (quantum) Gravity Perturbation Theory?
نویسنده
چکیده
In this paper, by making use of the perturbative expansion around topological field theory we are trying to understand why the standard perturbation theory for General Relativity, which starts with linearized gravity does not see gravitational collapse. We start with investigating classical equations of motion. For zero Immirzi parameter the ambiguity of the standard perturbative expansion is reproduced. This ambiguity is related to the appearance of the linearized diffeomorphism symmetry, which becomes unlinked from the original diffeomorphism symmetry. Introducing Immirzi parameter makes it possible to restore the link between these two symmetries and thus removes the ambiguity , but at the cost of making classical perturbation theory rather intractable. Then we argue that the two main sources of complexity of perturbation theory, infinite number of degrees of freedom and non-trivial curvature of the phase space of General Relativity could be disentangled when studying quantum amplitudes. As an illustration we consider zero order approximation in quantum perturbation theory. We identify relevant observables, and sketch their quantization. We find some indications that this zero order approximation might be described by Doubly Special Relativity.
منابع مشابه
Perturbative Noncommutative Quantum Gravity
We study perturbative noncommutative quantum gravity by expanding the gravitational field about a fixed classical background. A calculation of the one loop gravitational self-energy graph reveals that only the non-planar graviton loops are damped by oscillating internal momentum dependent factors. The noncommutative quantum gravity perturbation theory is not renormalizable beyond one loop for m...
متن کاملQuantum gravitational corrections to black hole geometries
We calculate perturbative quantum gravity corrections to generic eternal two-dimensional dilaton gravity spacetimes. We estimate the leading corrections to the AdS2 black hole entropy and determine the quantum modification of N -dimensional Schwarzschild spacetime. ∗ [email protected] † [email protected] In recent years, two-dimensional dilaton gravity has earned a great deal of attentio...
متن کاملGravitational collapse in loop quantum gravity
In this paper we study the gravitational collapse in loop quantum gravity. We consider the space-time region inside the Schwarzschild black hole event horizon and we divide this region in two parts, the first one where the matter (dust matter) is localized and the other (outside) where the metric is Kantowski-Sachs type. We calculate the state solving Hamiltonian constraint and we obtain a set ...
متن کاملIntroduction to String Theory
We give a pedagogical introduction to string theory, D-branes and p-brane solutions. 1 Introductory remarks These notes are based on lectures given at the 271-th WE-Haereus-Seminar ‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string theory for students and interested researches. No previous knowledge of string theory is assumed. The focus is on gravitational aspects and...
متن کاملCosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings
where Lm is the matter part Lagrangian. The gravitational field equation is presented in Eq. (2) of [1]. In contrast with the situation with generalized f(φ,R) gravity in Eq. (27), the gravity with Ricci-curvature square term in the action does not have the conformal symmetry to Einstein gravity [2]. In [1] we analysed the gravitational wave and derived a fourth order differential equation. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008